
Human Serum Metabonomic Analysis Reveals Progression Axes for

Glucose Intolerance and Insulin Resistance Statuses

Xiuying Zhang,† Yulan Wang,‡ Fuhua Hao,‡ Xianghai Zhou,† Xueyao Han,† Huiru Tang,*,‡ and
Linong Ji*,†

Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes
Centre, Beijing, China 100044, and State Key Laboratory of Magnetic Resonance and Atomic and Molecular
Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, The Chinese

Academy of Sciences, Wuhan, China 430071

Received June 15, 2009

Understanding the metabolic basis of glucose intolerances and insulin resistance is essential to facilitate
early diagnosis, satisfactory therapies and personalized treatments of type 2 diabetes (T2DM). Here,
we analyzed the serum metabolic variations from 231 human participants with normal glucose tolerance
(NGT, n ) 80, M/F ) 34/46, mean age 53 ( 10 years), impaired glucose regulation (IGR, n ) 77, M/F )
33/44, mean age 51 ( 10 years) and T2DM (n ) 74, M/F ) 32/42, mean age 51 ( 9 years) to establish
the relationship between the serum metabolite compositions and the development of diabetes. By
using the proton nuclear magnetic resonance spectroscopy in conjunction with the multivariate data
analysis, we found that the development of both glucose intolerances and insulin resistances are closely
correlated with the progressive changes of human serum metabonome. Compared with NGT subjects,
the IGR and T2DM participants showed clear dysfunctions of choline metabolism, glucose metabolism,
lipid and amino acid metabolisms, and disruptions of TCA cycle. The insulin resistance statuses were
closely associated with the serum metabonomic changes in terms of glucose, fatty acid and protein/
amino acid metabolisms. We also found greater metabonomic heterogeneity among the populations
with T2DM and high insulin resistance status. These findings provide useful information to bridge the
gaps in our understandings to the metabolic alterations associated with the progression of glucose
intolerances and insulin resistance status.
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Introduction

Type 2 diabetes mellitus (T2DM) is a complex polygenic
metabolism disorder due to insulin resistance and has become
one of the fastest growing public health problems in both
developed and developing countries. The World Health Orga-
nization estimated that the number of adults with diabetes will
be more than doubled from 135 million in 1995 to about 330
million by the year 2025.1 Population-based studies have shown
that the impaired glucose regulation (IGR) is even more
prevalent than type 2 diabetes2 and imposes a great risk in the
development of not only T2DM, but also vascular complica-
tions.3 Therefore, the investigation of the molecular alterations

related to IGR and the dynamic development processes of
glucose intolerance in the systems level is fundamentally
important for understanding the mechanisms responsible for
the development of T2DM, and subsequent complications and
effective treatments.

Recent advances in genomics, transcriptomics, proteomics
and metabonomics technologies have offered great opportuni-
ties for a more comprehensive understanding of pathophysi-
ology and etiology of complex diseases such as diabetes and
obesity.4 Some human genetic variants associated with in-
creased risk of T2DM have already been discovered using
genome-wide association strategy.5,6 However, the genomic
studies alone may not be sufficient for understanding the
development of T2DM since the dynamic environmental factors
also play important roles in the pathogenesis of diabetes.7,8 This
is clearly indicated in some recent reports that multiple genetic
markers fail to provide more power in predicting diabetes than
the traditional predictors.9 Furthermore, although common
variants in the fat mass- and obesity-associated (FTO) gene
were significantly associated with obesity in European popula-
tions, such association was not present for the obesity or T2DM
in the Han Chinese population indicating the importance of
gene-environment interactions in the development of T2DM.10
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This also suggests that the development of glucose intolerance
and diabetes is probably dependent on some environmental
factors and is thus population-dependent.

Metabonomics studies on different populations ought to be
crucial since metabonomics can provide holistic metabolism
(metabonome) information for the pathogenesis11 resulting
from both genetic and environmental factors.12 Metabonomics
approaches combine the metabolic profiles of biofluids ob-
tained from nuclear magnetic resonance (NMR) spectroscopy
and/or mass spectrometry (MS) with multivariate data analysis
techniques. In fact, metabonomics has already been widely
applied to understand the molecular aspects of stresses,13

carcinogenesis,14 drug toxicology15 and environmental sci-
ences.16 Potential biomarkers have been explored and identified
for a number of diseases, such as hepatocellular carcinomas17

and brain cancers,18 cardiovascular diseases19 and parasitic
diseases.20-22

A number of investigations have been reported to under-
stand the diabetes related metabolic alterations. In the early
1980s, NMR spectroscopic analysis of plasma and urine dem-
onstrated the usefulness of metabolic profiling in these aspects
by revealing the altered blood glucose metabolism and keto-
genesis in diabetes patients.23 More recently, metabolism
alterations in fatty acids, organic acids and phospholipids were
found to be responsive to diabetes and drug interventions.24-26

Metabonomic investigations further showed associations be-
tween the alterations in gut microflora and fatty liver27 probably
through altered gut microbiota modulations on host metaboli-
sms.28,29 Furthermore, metabonomic studies revealed many
changes of human plasma metabonome associated with dia-
betic kidney diseases, insulin resistance and glucose challenge
induced metabolic responses from prediabetes.30,31 However,
these works were either aimed at developing methods for
diabetes diangosis or based on limited cases without careful
exclusion of relevant conditions. Similar studies focused on the
Han Chinese populations remain to be carried out, especially
with the new findings on the population dependence of
T2DM.10 Comprehensive understanding of the metabolic char-
acteristics associated with different glucose tolerance and
insulin resistance statuses also remains to be achieved.

In this report, we analyzed the serum metabonomic char-
acteristics of the age- and sex-matched Han Chinese population
with normal glucose tolerance (NGT), IGR and T2DM using the
metabonomics approach based on the combination of NMR
spectroscopy and multivariate data analysis. The aims of this
study are to explore the relationships between the serum
metabonome and the glucose intolerance and insulin resistance
statuses with a view to provide more insights into metabolic
progression associated with the development of glucose intol-
erance and insulin resistance in a Han Chinese population.

Experimental Methods

Study Subjects and Sample Collection. The study subjects
were recruited in Beijing as part of a project entitled “The
nationwide survey of the prevalence of type 2 diabetes and
metabolic syndrome” project. All participants were adults of
Han ethnic residents in Beijing region without hypertension,
renal or liver dysfunction. The study protocol was in accordance
with the Helsinki declaration and approved by the ethics
committee of Peking University with written informed consent
from all participants. To focus on the objectives of this study
and exclude the effects of age, gender, and obesity, a total of
231 age-, gender-, and body mass index (BMI)-matched

participants were selected and divided into three groups
according to WHO criteria of diagnosis of diabetes.32 These
groups are participants with NGT (n ) 80, M/F ) 34/46, mean
age 53 ( 10 years), IGR, including subjects with impaired
fasting glucose and/or impaired glucose tolerance (n ) 77, M/F
) 33/44, mean age 51 ( 10 years), and T2DM (n ) 74, M/F )
32/42, mean age 51 ( 9 years). Among the T2DM group, 48
patients were newly diagnosed thus without any treatments;
another 26 patients were only treated with short-acting oral
hypoglycemic drugs (in the form of monotherapy) about 10-14
h prior to sampling; these drugs include metformin hydrochlo-
ride, acarbose, glipizide or repaglinide (with inefficient glycemic
control). For NGT and IRG groups, no lifestyle or drug
interventions were introduced prior to taking the blood samples.

Venous blood samples were taken from individuals after
overnight fasting for at least 10 h and the serum samples were
obtained in the normal manner. Aliquots of serum samples
were snap frozen in liquid nitrogen, and stored at -80 °C until
NMR analysis was performed. Oral glucose tolerance test
(OGTT) was performed for each participant by measuring
plasma glucose levels at 0 and 2 h after oral ingestion of 75 g
of glucose.

Clinical Chemistry Measurements. Serum total cholesterol
(CH), low-density lipoprotein cholesterol (LDL-C), high-density
lipoproteins cholesterol (HDL-C) and triglycerides (TG) were
measured using an automatic biochemical analyzer (Olympus
AU640). The level of fasting insulin (FINS) was determined
using the ADVIA Centaur immunoassay system (Fernwald,
Germany) according to the manufacturer’s instruction. The
insulin resistance index (IR) was calculated from the fasting
plasma glucose (FPG, mmol/L) and insulin values (FINS, µU/
mL) as HOMA-IR ) FPG*FINS/22.5.33

NMR Spectroscopic Analysis. For NMR analysis, 400 µL of
serum samples was mixed with 200 µL of 0.9% NaCl (w/v)
solution containing 50% D2O (as a field lock) followed with 10
min centrifugation at 10 000 rpm with a benchtop centrifuge.
A total of 550 µL of the supernatant of each sample was then
transferred into a 5 mm high quality NMR tube individually.
All NMR spectra were recorded at 298 K on a Bruker AVIII 600
spectrometer (Bruker Biospin, Germany) equipped with a
cryogenic probe operating at 600.13 MHz for 1H and 150.91
MHz for 13C, respectively.

For each sample, two spectra were recorded including a
standard one-dimensional spectrum and a spin-spin relaxation
(T2) edited spectrum using NOESYPR1D pulse sequence (RD-
90-t1-90-tm-90-acqusition) and Carr-Purcell-Meiboom-Gill34

(CPMG, RD-90°-(τ-180°-τ)n-acquisition) sequence, respectively.
In both experiments, the 90° pulse length was set to about 10
µs; a total of 32 FIDs (free induction decay) were collected into
32k data points with a spectral width of 20 ppm and the recycle
delay (RD) of 2 s. Water signal was saturated with a weak
irradiation during the recycle delay and mixing time (tm) of 100
ms; t1 was set to 3 µs. In the CPMG experiments, the τ value
was 350 µs and the relaxation delay (2nτ) was 35 ms. With these
parameters, the lipid signals were attenuated only to assist
observation of small metabolites and were still included in
multivariate data analysis (see Figure 1). Assuming small
intergroup variations for the T2 values of the lipid species, little
effects on the data analysis results of these biochemical species
are expected for such CPMG parameters.

For spectral assignment purposes, two-dimensional NMR
(2D NMR) spectra were recorded for selected samples including
1H-1H correlation spectroscopy (COSY), total correlation spec-
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troscopy (TOCSY) and J-resolved NMR spectra. 1H-1H COSY
2D NMR spectra were recorded with the gradient selected pulse
sequence, while 1H-1H TOCSY 2D NMR spectra were acquired
with MLEV17 as the spin-lock scheme and mixing time of 80
ms. In both cases, 128 increments were acquired and each
increment was featured with 2048 data points and the spectral
width of 10.5 ppm in both dimensions. The data were zero-
filled into 2048 data points for both dimensions prior to Fourier
Transformation (FT). The J-resolved spectra were recorded with
50 increments and each increment was defined with 4096 data
points and spectral-width of 10.5 ppm.

Spectral Processing and Analysis. The FIDs for one-
dimensional data were zero-filled to 128k and multiplied by
an exponential function with the line-broadening factor of 0.5
Hz prior to FT. The NMR spectra were then corrected for phase
and baseline distortions using Topspin (Version 2.0, Bruker
Biospin) and referenced to the doublet of R-glucose (δ5.23).
The region δ0.5-9.5 was divided into 2833 integral segments
with the width of 0.003 ppm (1.8 Hz) using AMIX software
package (V3.8.3, Bruker Biospin, Germany). The regions at
δ4.09-4.21, δ4.32-5.17, and δ5.50-6.50 were discarded to
eliminate the effects of imperfect water saturation and the urea
signals. The spectral data were then normalized to a constant
sum for each spectrum.

Multivariate data analysis was performed with the software
SIMICA-P+ (v11.0, Umetric, Umea, Sweden). Principal compo-
nent analysis (PCA), partial least-squares-discriminant analysis
(PLS-DA) and the orthogonal projection to latent structure with
discriminant analysis (OPLS-DA)35 were employed sequentially
to find outliers and to extract the statistically significant metabolite
changes related to this study. OPLS-DA models were calculated
with unit variance scaling (UV) and the results were visualized in
the forms of scores plots to show the group clusters and loadings
plots to show variables (NMR signals) contributing to clustering;
the loadings obtained were back-transformed before generating

the coefficient-coded loadings plots,36 where variables were color-
coded with the absolute values of the Pearson correlation coef-
ficients (r), using a Matlab script (V7.0, The Math-works, MA)
downloaded (http://www.mathworks.com/) and modified in-
house by Dr Zhu Hang. A 7-fold cross-validation was applied to
all PLS and OPLS models and the reliabilities of models were
further rigorously validated by permutation tests37 with a per-
mutation number of 200. Since OPLS-DA results obtained from
the NOESYPR1D NMR spectra are similar to those from CPMG
NMR spectra, only the detailed analysis for the CPMG spectra will
be discussed in the Results and Discussion.

Results

Clinical Chemistry. The clinical chemistry data (Table 1)
showed that FPG, plasma glucose 2 h after oral glucose
challenge (2hPG), TG, LDL-C, FINS and IR values are all
significantly higher in T2DM patients than in the NGT group
(p < 0.05), whereas HDL-C level is lower in T2DM patients than
in NGT and IGR groups. LDL-C, 2hPG, FINS and IR values for
the IGR participants are also higher than those for NGT group.

1H NMR Spectroscopy of Serum Samples. Figure 1 shows
three typical 1H CPMG NMR spectra for human sera from
individuals with NGT (Figure 1A), IGR (Figure 1B), and T2DM
(Figure 1C), respectively. The NMR resonances were assigned
according to the literature data38,39 and further confirmed with
2D NMR results. Similar to the published observations,39 our
cohort samples mainly contained glucose, a range of amino
acids, some organic acids, lipids, choline and creatinine. Clear
differences in triglyceride levels (peak 28) can be observed
between the T2DM and NGT groups. However, in order to
recover the characteristics of metabolic patterns of participants
with T2DM and IGR, multivariate data analysis of NMR spectra
was subsequently performed.

Multivariate Data Analysis of NMR Data. To determine
whether the short-acting hypoglycemic drug treatments had
any lasting impacts on the serum metabolic profiles, PCA and
OPLS-DA were performed for the NMR data obtained from two
T2DM subgroups including the newly diagnosed or untreated
(n ) 48) and T2DM patients subjected to treatment with short-
acting oral hypoglycemic agents (n ) 26). The PCA and OPLS-
DA scores plots (Supplementary Figure S1A and S1B) showed
no significant differences between the serum metabonome of
these two subgroups. This is also consistent with the findings

Figure 1. 600 MHz CPMG1H NMR spectra of human serum
samples with (A) normal glucose tolerance, (B) impaired glucose
regulation and (C) type2 diabetes (the region at δ6.5-8.0 was
expanded for 32 times). The area labeled “region 1” in spectra
C contains signals from glucose, lipid and amino acids. Keys: 1,
leucine/isolucine (Leu/Ile); 2, valine (Val); 3, lysine (Lys); 4, alanine
(Ala); 5, arginine (Arg), leucine, lysine; 6, proline (Pro); 7,
methionine (Met); 8, glutamate (Glu); 9, glutamine (Gln); 10,
threonine (Thr); 11, tyrosine (Tyr); 12, methylhistidine; 13, phe-
nylalanine (Phe); 14, 3-methylhistidine; 15, histidine (His); 16,
lactate; 17, citrate; 18, creatinine; 19, �-glucose (Glc); 20, R-glu-
cose; 21, HDL; 22, LDL; 23, VLDL; 24, Glycoprotein; 25, lipid; 26,
lipid; 27, choline; 28, glyceryl of lipid; 29, water; 30, unsaturated
lipid.

Table 1. The Clinical Data for Normal Glucose Tolerance
(NGT), Impaired Glucose Regulation (IGR), and Type 2
Diabetes (T2DM) Groups

clinical indicator NGT (N ) 80) IGR (N ) 77) T2DM (N ) 74)

Sex (M/F) 34/46 33/44 32/42
Age (year) 51 ( 9a 51 ( 10 53 ( 10
BMI (kg/m2) 25.1 ( 2.3 25.9 ( 2.7 25.9 ( 3.0
SBP (mmHg) 127 ( 14 129 ( 15 130 ( 15
DBP (mmHg) 77 ( 8 79 ( 8 78 ( 8
FPG (mmol/L) 5.44 ( 0.39 5.96 ( 0.53 9.20 ( 2.93c,d

2hPG (mmol/L) 5.54 ( 1.23 8.27 ( 1.33b 17.2 ( 6.9 c,d

CH (mmol/L) 4.57 ( 0.78 4.85 ( 0.97 4.74 ( 1.11
TG (mmol/L) 1.28 ( 0.61 1.45 ( 0.75 1.86 ( 1.18c,d

HDL-C (mmol/L) 1.27 ( 0.25 1.26 ( 0.28 1.14 ( 0.28 c,d

LDL-C (mmol/L) 2.45 ( 0.66 2.77 ( 0.72b 2.70 ( 0.87c

FINS (MIU/L) 6.59 ( 3.15 8.83 ( 5.0b 8.14 ( 4.26c

IR 1.61 ( 0.82 2.36 ( 1.43b 3.10 ( 1.55c,d

a Means ( SD. b P < 0.05 for IGR vs NGT. c P < 0.05 for T2DM vs NGT.
d P < 0.05 for T2DM vs IGR.
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from the fasting blood glucose data which showed no signifi-
cant differences for these two subgroups (9.88 ( 3.09 vs 8.83
( 2.80 mmol/L, P > 0.05). This is probably due to the short-
acting nature of these drugs with respect to the time scale of
long fasting. Therefore, in the subsequent comparative meta-
bonomic analysis, these two subgroups were treated together
as a single group (T2DM group).

PLS-DA was conducted for all three groups, namely, NGT,
IGR and T2DM, using NMR data as X-matrix and the class
information as the Y-matrix with two PLS components calcu-
lated (R2X, 0.52; Q2Y, 0.33). The scores plot (Figure 2A) clearly
showed an axis of glucose intolerance progression from NGT
to IGR and further to T2DM groups. The result of permutation
test indicated that this PLS-DA model was reliable in explaining
and predicting the variations in X and Y matrix (Figure 2B,
intercepts: R2 ) 0.0, 0.03; Q2 ) 0.0, -0.06).

To further identify the significant serum metabonomic
differences between three different groups representing dif-
ferent glucose tolerance statuses, pairwise comparative OPLS-
DA analyses were conducted with one orthogonal and one
predictive component calculated for each of the models. The
results are displayed in the forms of scores plots and corre-
sponding loadings plots with color-coded correlation coef-
ficients of metabolites (Figure 3). The observed phase (positive
or negative) of the resonance signals represents the relative
(increase or decline) changes in the concentration of metabo-
lites. The hot colored metabolites (e.g., red) show more
significant contribution than the cold colored (e.g., blue) ones
for the intergroup discrimination. In this study, a correlation
coefficient of |r| > 0.23 was used as the cutoff value for the
statistical significance based on the discrimination significance
at the level of p < 0.05, which was determined according to
the discriminating significance of the Pearson’s product-
moment correlation coefficient.36 The discriminating metabo-
lites and corresponding coefficients with different glucose
tolerance status are summarized in Table 2.

The OPLS-DA scores plot showed clear separation (with
R2X)0.55, Q2Y ) 0.76) between the T2DM patients and NGT
groups (Figure 3A). The corresponding loadings plot revealed
that, compared with NGT group, the T2DM sera contained
significantly higher levels of glucose together with lower levels
of citrate, lactate and some amino acids including alanine,
leucine, isoleucine, valine, methionine, proline, lysine, tyrosine,
histine and glutamine. In addition, T2DM group contained

lower concentrations of HDL-C and choline than the NGT
group (Table 2). Good serum metabonomic differentiation is
also evident for the IGR and T2DM groups (R2X ) 0.54, Q2Y )
0.57) (Figure 3B). The corresponding coefficient-coded loadings
plot indicated that, compared with IGR group, the sera of T2DM
group had significantly higher concentration of glucose but
lower concentrations of lactate, citrate, HDL-C, choline and
some amino acids including alanine, isoleucine, histidine and
glutamine. Furthermore, the metabonomic differences between
IGR and NGT groups (R2X ) 0.48, Q2Y ) 0.40) are visible in the
OPLS-DA scores plot (Figure 3C). Detailed analysis suggests
that, compared with NGT group, the sera of IGR group has
relative higher levels of glucose but lower levels of lactate and
some amino acids including alanine, histidine and glutamine.
However, it is worth noting that the serum metabonomic
differences between IGR and NGT groups are much less drastic
than those between IGR and T2DM groups. The permutation
tests showed that all the above pairwise comparative OPLS-
DA models are of good quality and reliability (Supplementary
Figure S2A-C). Moreover, the T2DM group showed greater
intragroup metabonomic differences than the other two groups.

To find out whether the serum metabonomic features are
associated with the IR index throughout these three groups,
we calculated an OPLS model (Figure 4) using NMR data as
X-matrix and IR values as Y-matrix with one PLS and one
orthogonal component (R2X ) 0.52, Q2Y ) 0.16). The PLS scores
plot of such model (Figure 4A) showed three distinct groupings
for participants with low IR (0.40-1.40, black squares), inter-
mediate IR (1.41-2.80, red dots) and high IR values (2.81-7.75,
blue triangles), indicating the presence of association between
the serum metabonome and the insulin resistance statuses. It
is further noted that the high IR group has an obviously greater
intragroup variations probably indicating a greater metabo-
nomic heterogeneity than the other two groups. The corre-
sponding coefficient-coded loadings plot (Figure 4B) showed
that, with the increase of IR values, the concentrations of
glucose and VLDL were increased, whereas the levels for HDL-
C, lactate, choline, citrate and several amino acids including
alanine, valine, leucine and glutamine were decreased. The
permutation test result also indicated that this OPLS model was
reliable (Supplementary Figure S3).

Discussion

The above observations indicate that the NMR-based me-
tabonomics approach is feasible to analyze the metabonomic
differences between different insulin resistance and glucose
intolerance statuses including NGT, IGR and T2DM groups.
Such approach is also useful to pin down the important
metabolic pathways which may play vital roles in the develop-
ment of diabetes. Furthermore, this study showed a clear
metabonomic trajectory with the increase of the insulin
resistance (Figure 4A) and for glucose intolerance from NGT
to IGR and further to T2DM (Figure 2), probably indicating the
presence of a continuous progressive development axis for the
insulin resistance and the glucose intolerance severity. Although
this observation coincides, to some extent, with the changes
of fasting blood glucose, our results revealed more details in
the metabolic complexity of insulin resistance and glucose
intolerance statuses than glucose measurement alone, espe-
cially when the NGT and IGR groups were concerned. Such
progressive development is not surprising since an individual
with IGR may take some years to become T2DM depending
on the lifestyles and genetic background. These results also

Figure 2. (A) PLS-DA scores plot (R2 ) 0.52, Q2 ) 0.33) for normal
glucose tolerance (NGT, n ) 80, black squares), impaired glucose
regulation (IGR, n ) 77, red dots), and type 2 diabetes (T2DM, n
) 74, blue stars). (B) Permutation test plot for the PLS-DA model
(number of permutations, 200; intercepts: R2 ) 0.0, 0.03; Q2 )
0.0, -0.06).
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suggest that the dysfunction of glucose homeostasis is a
progressive process accompanied with many metabolic changes
and there may not be a clearly defined boundary for glucose
intolerances. Furthermore, the progressive changes of serum
metabonome are correlated with the insulin resistance sug-
gesting the close association between development of insulin
resistance and the serum metabonomic changes in a holistic
manner.

The Changes of Glucose Metabolism. In this study, one of
the most obvious observations is the marked elevation of blood
glucose level together with reduced levels of the citrate and
lactate levels in T2DM and IGR groups in comparison with the

NGT group; the concentration of citrate was also lower in
T2DM patients than in IGR individuals (Figure 3). This suggests
the disturbance of glycolysis and TCA cycle in IGR and T2DM
groups and the severity of such disturbance increased from IGR
to T2DM. Since citrate is one of the most important TCA cycle
intermediates, its depletion indicates a reduction of the aerobic
glycolysis. Insulin plays a major role in the uptake of glucose
into muscle and adipose tissue, and facilitates anaerobic and
aerobic glycolysis. Insulin resistance and insufficient insulin
secretion often lead to the weakened glycolysis and subsequent
elevation of glucose and reduced production of citrate and
lactate (Figure 5). Furthermore, insulin resistance leads to
reduced rate of muscle glycogen synthesis and, hence, ac-
cumulation of glucose in the blood circulation. In the current
investigation, we found a direct and positive correlation
between the levels of serum glucose and IR index and a
negative correlation between the levels of citrate, lactate and
IR (Figure 4), supporting the notion that insulin resistance is
associated with disturbed metabolism of glucose and TCA
cycle.40 However, the changes of the lactate levels are incon-
sistent with these previously reported41 probably for a number
of reasons. The medical history of participants enrolled may
contribute to such discrepancy; in our investigation, most
participants in T2DM groups were diagnosed for the first time
and had not been previously treated, whereas other studies did
not report the stage of disease development and treatment
histories. Different sampling methods in the premeasurement
procedures could also contribute to the variations in the levels
of lactate. Although our study adopted a similar sampling

Figure 3. OPLS-DA scores plots and regression coefficient plots for (A) T2DM (blue stars, positive) and NGT groups (black squares,
negative), (B) T2DM (blue stars, positive) and IGR groups (red dots, negative), and (C) IGR (red dots, positive) and NGT groups (black
squares, negative). |r| represents the scale for the coefficients of the variables contributing to the group classifications.

Table 2. The Significantly Changed Metabolites Related to the
Different Glucose Intolerance Status (|r| > 0.23, p < 0.05)

metabolites
changes

in IGR (vs NGT)
changes

in T2DM(vs IGR)
changes

in T2DM(vs NGT)

HDL V V

Isoleucine V

Leucine V

Valine V

Alanine V V V

Methionine V

Glutamine V V V

Citrate V V

Lysine V V

Choline V V

Lactate V V V

Tyrosine V V V

Phenylalanine V V V

Histidine V V V

Glucose v v
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method for all three groups, further investigation is clearly
warranted to confirm the lactate changes.

The Changes of Amino Acids Metabolism. In this study, we
have observed a declined level of a range of amino acids in
T2DM patients (Table 2) which is consistent with the previously
reported results. For example, in a cross-sectional study of the
first-degree relatives of T2DM parents,42 fasting hyperinsuline-
mia and lower levels of amino acids such as alanine, serine,
glutamine and glycine were observed in the plasma of the
offspring of diabetic parents. The reduced levels of amino acids
observed in T2DM could be explained by altered energy
metabolism as well. Since the utilization of carbohydrate is
impaired to some extent in IGR and T2DM, the oxidation of
amino acids becomes an alternative energy source by entering
TCA cycle at different points. In addition, the conversion of
amino acids into glucose via gluconeogenesis can be enhanced
in T2DM patients (Figure 5). The reduced levels of amino acids
in T2DM patients are also partially related to the alterations in
the rate of protein turnovers, which is confirmative evidence
for the reported elevations in protein flux, synthesis and
breakdown with the net balance diminished in patients with
T2DM.43

Insulin has an important regulatory function in the supply
of amino acids from muscle protein for gluconeogenesis. In
this study, a negative correlation between the levels of amino
acids and IR was observed (Figure 4). When the balance
between the level of insulin and Glucagon is disturbed, amino
acids become one of the most important precursors for
gluconeogenesis. Impaired insulin secretion also promotes the
direct gluconeogenesis from amino acids and results in the
increases in the level of glucose.44 This may in turn explains

the observed decreases in a range of amino acids in the serum
of T2DM patients. The findings observed here suggest that the
perturbations in amino acids are complex in the progression
of diabetes even though the proteolysis, gluconeogenesis and
oxidative catabolism are probably the major relevant pathways.
Nevertheless, further studies are clearly in demand to elucidate
the roles of the amino acid metabolism in both the develop-
ment and management of diabetes.

The Changes of Lipid Metabolism. Insulin resistance and
T2DM are often associated with lipid metabolism disorders
such as hypertriglyceridemia, elevation of LDL and alleviation
of HDL cholesterol. Our findings are in good agreement with
those mentioned above (Figure 4). Such findings are also
confirmed by the clinical chemistry data obtained in this study
(Table 1). A similar observation was reported45 that insulin
resistance had close association with the concentrations for
VLDL, LDL, and HDL cholesterol in T2DM patients. Other
studies have also reported the connection between insulin
sensitivity and the level of HDL-C in patients with T2DM by
increasing hepatic secretion of triglyceride-rich VLDL particles
and by impairing the clearance of lipoprotein particles from
plasma.46

Furthermore, we observed that the decline of serum choline
level was associated with T2DM and the increases in the IR
values (Figure 4). Since choline is an important precursor of
phosphorycholine that is a necessary component for assembly
and secretion of VLDL, lack of choline can lead to accumulation
of TG in the liver, causing liver steatosis (Figure 5). Coincidently,
the prevalence of nonalcoholic fatty liver has found to be
associated with T2DM patients47 and a choline-deficiency diet
can cause hepatic steatosis,48 which is reversible by choline
intravenous infusion. A possible microbiota involvement in
choline metabolism was proposed27 with the observation of
an increased level of methylamines, a microbiota-mediated
choline metabolite, in the urine of high fat diet-induced insulin
resistance mice. Therefore, it is possible that alterations of gut
microbiotal activities may have important implications in the
development of diabetes. It is particularly worth mentioning
that greater metabonomic variations are present for the T2DM
group than the other two groups and for the high IR group
clearly indicating the marked metabonomic heterogeneity in
T2DM and high IR groups. The details are in need of further
investigation.

Conclusions

Clear metabolic differences are present between different
glucose intolerance statuses including NGT, IGR and T2DM and

Figure 4. OPLS scores plot (A) and regression coefficient plot (B) for the correlation between NMR data and insulin resistance (IR)
index including low IR (black squares), intermediate IR (red dots), and high IR (blue triangles).

Figure 5. An overview of the metabolic pathway alterations
related to the glucose intolerance and insulin resistance statuses.
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different insulin resistance statuses. The metabonomic changes
are closely associated with the progressive development of
insulin resistance status and the glucose intolerance severity.
The metabonomic alterations associated with glucose intoler-
ance and insulin resistance status are highlighted by the
dysfunction of glucose and lipid metabolism, and oxidative
catabolism of amino acids. The alterations of choline metabo-
lism noticed in T2DM patients imply the importance of changes
in gut microbiotal activity in diabetic development. The
combination of these metabolism alterations and associated
biomarkers such as glucose, lipoproteins, citrate and amino
acids may collectively hold promise for early prediction and
diagnosis for the development of T2DM and insulin resistance.
Our study also demonstrates that the NMR-based metabo-
nomics approach is feasible for rapid and high-throughput
investigation of other metabolic disorders to provide insight
into the metabolic mechanism underlying the disease develop-
ment and facilitate the efficient delivery of personalized
medicine.

Abbreviations: COSY, correlation spectroscopy; CPMG,
Carr-Purcell-Meiboom-Gill; FID, free induction decay; FINS,
fasting insulin; FPG, fasting plasma glucose; FT, Fourier
Transformation; IGR, impaired glucose regulation; IR, insulin
resistance index; NGT, normal glucose tolerance; NMR, nuclear
magnetic resonance; OGTT, Oral glucose tolerance test; OPLS-
DA, orthogonal partial least-squares-discriminant analysis; PCA,
principal components analysis; PLS, partial least-squares;
TOCSY, total correlation spectroscopy; T2DM, type 2 diabetes.
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