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Abstract

We study the formation of slow dark optical solitons in a two-photon resonance Raman scheme. For a four-level
atomic medium with two ground and two closely separated excited states, two transitions between one ground state
and two excited states are coupled simultaneously by a strong cw laser field. This cross talk among optical transitions
can modify the linear and nonlinear responses of another weak pulse probing the transition between the other ground
state and one excited state. Under two-photon resonance condition and with appropriate one-photon detuning, we can
obtain cancellation of the linear absorption, enhancement of Kerr nonlinearity, and slow group velocity propagation of
the weak probe pulse. As a consequence, slow dark optical solitons can be formed.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Dispersive and absorptive properties of an
atomic medium can be dramatically modified by
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coherence and interference induced by applying
external fields. In recent years, there has been a
great deal of interest in the propagation of light
pulses through the modified media. Using the tech-
nique of electromagnetically induced transparency
(EIT) [1] or Raman-assisted interference effects,
the group velocity of a light pulse can be largely
reduced and even stopped [2–4]. Associated with
cancellation of linear absorption and reduced
ed.
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Fig. 1. Energy schematic diagram of a four-level system with
two ground states and two closely separated excited states.
There are three dipole allowed transitions |2æM |4æ, |2æ M |3æ,
and |1æ M |4æ between ground and excited states. When the Rabi
frequency of the strong cw laser field Ec is comparable with the
separation d of the two excited states, Ec can act on two
transitions |2æ M |4æ and |2æ M |3æ simultaneously. A weak pulse
probes |1æ M |4æ transition.
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group velocity, many studies have shown that opti-
cal nonlinearities can be largely enhanced at low
light intensities [5], such as cross-phase modulation
(XPM) [6], enhancement of self-modulation Kerr
effect [7], and multi-wave mixing [8–10]. In addi-
tion, combining slow light propagation and en-
hanced nonlinear effects, Wu and Deng [11,12]
have theoretically proposed that it is possible to
form ultraslow optical bright and dark solitons
for weak light in Raman scheme.

As is well known, if the nonlinear refractive in-
dex can exactly compensate group velocity disper-
sion (GVD), it will result in optical solitons which
keep pulse shape preserving propagation [13]. The
third-order nonlinear self-phase modulation effect
is the key to the formation of solitons. As used
in [11,12], there are, in general, two ways [14] to
enhance Kerr nonlinearities (including cross-Kerr
effect and self-modulation Kerr effect). One way
is applying another laser field [6] and the other
way is taking a slight two-photon detuning
[7,15], to disturb the two-photon resonance condi-
tion in a three-level K EIT case or Raman scheme.

In this paper, we propose a new approach to
form slow optical solitons. The same as [11,12],
our system is also based on two-photon resonance
Raman scheme, which can cancel linear absorp-
tion and reduce group velocity of a weak probe
pulse. However, the self-phase modulation nonlin-
earity is different from the two general ways and
comes from the cross talk among optical transi-
tions. In most studies, one laser just acts on one
transition. In practice, more complicated situa-
tions exist for real atomic levels. Multi-coupling
of one laser due to the nearby hyperfine levels
has been studied in EIT [16]. Some other studies
have shown that this common coupling can cause
gain [17], optical bistability [18], and eliminating
nonlinear phase shift [19]. Here, for a two-photon
resonance Raman configuration composed by a
strong cw laser field and a weak pulse light in a
four-level atomic medium, the strong cw laser field
can couple two transitions. The double coupling of
the strong cw laser field largely enhances the third-
order Kerr nonlinearity of the weak probe pulse.
Through the nonlinear Schrödinger equation, we
demonstrate the formation of dark optical solitons
propagating with very slow group velocity.
2. Model and equations

We consider a medium with two ground states
|1æ and |2æ, and two excited sates |3æ and |4æ,
shown schematically in Fig. 1. A strong cw laser
field Ec can drive two transitions |2æ M |4æ and
|2æ M |3æ simultaneously. State |1æ is coupled to
state |4æ by a weak probe pulse Ep. The transi-
tion |1æM |3æ is dipole forbidden transition due
to selection rules. In the dipole and rotating-
wave approximations, the Hamiltonian of the
system in the interaction representation is given
by [20]

H ¼ �Dpj4ih4j � ðDp þ dÞj3ih3j � ðDp � DcÞj2ih2j
� Xc1j4ih2j þ Xc2j3ih2j þ Xpj4ih1j þH.c.
� �

.

ð1Þ

where d is the frequency separation of two excited
states, Dc = xc � x42 and Dp = xp � x41 are sin-
gle-photon detunings of driving andprobe fieldwith
transitions |2æ M |4æ and |1æ M |4æ, respectively.
Xc1 = l42Ec/2�h, Xc2 = l32Ec/2�h, and Xp = l41Ep/
2�h are one-half Rabi frequencies for the respective
transitions, with lmn (m,n = 1, 2, 3, 4) denoting the
dipole moment for the corresponding transition
|mæM |næ. From the Schrödinger equation, we get
a set of atomic equations of motion
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oA1

ot
¼ iX�

pA4; ð2aÞ

oA2

ot
¼ �½c2 � iðDp � DcÞ�A2 þ iX�

c1A4 þ iX�
c2A3;

ð2bÞ
oA3

ot
¼ �½c3 � iðDp þ dÞ�A3 þ iXc2A2; ð2cÞ

oA4

ot
¼ �ðc4 � iDpÞA4 þ iXpA1 þ iXc1A2. ð2dÞ

Here, Aj is the jth atomic wavefunction amplitude.
c2 is the decay rate of the |2æ � |1æ coherence. 2c4
and 2c3 are the decay rates of excited states |4æ
and |3æ, respectively.

In the following calculations, it is assumed to be
sufficiently weak that the ratio (|Xp|/|Xc1|)

2 is much
less than unity (weak probe approximation), so
that in essence all of the atomic population re-
mains in the ground state |1æ. Also, the excited
state |4æ can be adiabatically eliminated when the
variation of the probe field�s envelope is slow com-
pared to the excited sate lifetime, so there is no
population transfer of the ground state |1æ. With
these assumptions, we can show that Að0Þ

1 � 1,
Að0Þ
2;3;4 ¼ 0 (to the zero order of Xp), and Að1Þ

1 ¼ 0
(to the first order of Xp). We keep two-photon res-
onance (Dp = Dc = D) and get the solutions of Aj

to the first order of Xp from Eqs. (2b)–(2d)

Að1Þ
2 ¼ � C3Xc1Xp

iC2C3C4 þ C3jXc1j2 þ C4jXc2j2
; ð3aÞ

Að1Þ
3 ¼ i

iXc1Xc2Xp

iC2C3C4 þ C3jXc1j2 þ C4jXc2j2
; ð3bÞ

Að1Þ
4 ¼ �i

iðiC2C3 þ jXc2j2ÞXp

iC2C3C4 þ C3jXc1j2 þ C4jXc2j2
. ð3cÞ

where C2 = �c2, C3 = �[c3 � i(D + d)] and C4 =
�(c4 � iD).
3. Linear and third-order nonlinear susceptibilities

The induced polarization at the probe fre-
quency is P(xp) = v(xp)Ep. The susceptibility is
written as

vðxpÞ ¼ vð1ÞðxpÞ þ 3vð3ÞðxpÞjEpj2; ð4Þ
where we just consider the susceptibility to the
third-order and neglect the higher orders. The
first-order susceptibility v(1)(xp) of the probe pulse
is expressed as

vð1ÞðxpÞ ¼ KðAð1Þ
4 Að1Þ�

1 =XpÞ

¼ �K
iC2C3 þ ijXc2j2

C2C3C4 þ C3jXc1j2 þ C4jXc2j2
; ð5Þ

where K = N|l14|
2/�h and N is the atomic density.

For cold atoms, the decay rate of the |2æ � |1æ
coherence is very weak (c2 � c3,c4). In order to
get a simple result of Eq. (5), we can neglect the
decoherence term by taking C2 = 0 and get

vð1ÞðxpÞ ’ �K
ijXc2j2

C3jXc1j2 þ C4jXc2j2
. ð6Þ

We can see that the first-order susceptibility
v(1)(xp) is mainly caused by double coupling of
the driving field. When single-photon detuning
D = 0, Eq. (6) in expression is similar to the
cross-Kerr nonlinearity in ‘‘N’’ configuration
[6,20], Xc2 corresponds to the signal field, and
Xc1 corresponds to the coupling field. Defining
g = |l42|

2/|l32|
2, Eq. (6) reduces to

Re½vð1ÞðxpÞ� ’ �K
dgþ ð1þ gÞD

ðgc3 þ c4Þ
2 þ ½dgþ ð1þ gÞD�2

;

ð7aÞ

Im½vð1ÞðxpÞ� ’ K
gc3 þ c4

ðgc3 þ c4Þ
2 þ ½dgþ ð1þ gÞD�2

.

ð7bÞ

It shows that the absorption (� Im[v(1)(xp)]) and
dispersion (� Re[v(1)(xp)]) of the probe field do
not depend on the intensity of the driving field,
v(1)(xp) is a linear susceptibility. When D =
�dg/(1 + g), there appears a absorption peak
(Im [v(1)(xp)]max = K(gc3 + c4)/(gc3 + c4)

2) and
the corresponding dispersion is zero. From Eq.
(5), Im[v(1)(xp)/K] and Re[v(1)(xp)/K] versus the
single-photon detuning D are plotted in Fig. 2.
Far away from the point D = �dg/(1 + g), the
linear absorption will be near zero. These
features behave similar to the absorption and
dispersion of one laser field interacting with a
two-level system.



Fig. 2. Calculated Im[v(1)(xp)/K] and Re[v(1)(xp)/K] versus the
single-photon detuning D in the two-photon resonance condi-
tion for the four-level system. The parameters are c3 = c4 = c,
c2 = 1 · 10�4c, d = 5c, Xc1 = c, and g = 3/2.

334 L.B. Kong et al. / Optics Communications 255 (2005) 331–337
Following the methods used in [11,12], the third-
order nonlinear susceptibility can be written as

vð3ÞðxpÞ ¼ � 1

3
K 0 A

ð1Þ
4 ðjAð1Þ

4 j2 þ jAð1Þ
3 j2 þ jAð1Þ

2 j2Þ
jXpj2Xp

.

ð8Þ
where K 0 = N|l14|

4/�h3. For the simple there-level K
configuration (|1æ, |2æ and |4æ, Xc1 and Xp), the
third-order nonlinear susceptibility is zero under
the two-photon resonance condition [7]. But in this
four-level two-photon resonance Raman system,
the coupling of the driving field with transition
|2æM |3æ (Xc2) destroy the coherence between state
|1æ and |2æ induced by Xc1, which causes the linear
absorption of the probe field and also leads to the
nonlinear effect.

We perform a numerical calculation of the
third-order nonlinear susceptibility. Fig. 3(a)
shows the curves of Im[v(3)(xp)/K

0] and
Re[v(3)(xp)/K

0] versus the single-photon detuning
D. As a comparison, the third-order nonlinear sus-
ceptibility of a regular two-level atomic medium is
plotted in Fig. 3(b). When D = 30c, we have
Re[v(3)(xp)/K

0] = 4.9 · 10�3 for the four-level sys-
tem, but Re[v(3)(xp)/K

0] = 3.7 · 10�5 for a regular
two-level atomic medium. We can see that the
nonlinear Kerr effect has been largely enhanced
in this two-photon resonance Raman scheme.
4. Slow dark optical solitons

If the losses of the probe pulse are small enough
and can be neglected, the balance between the non-
linear self-phase modulation and group velocity
dispersion eventually cause the probe pulse keep
shape preserving propagation to form a soliton.
From above discussions, as long as single-photon
detuning D is far away from the point �dg/
(1 + g), the linear absorption (� Im[v(1)(xp)]) of
the probe pulse is negligible and the nonlinear
self-phase modulation is enhanced. So the system
is possible to form solitons for a weak probe pulse.

In the slowly varying amplitude approximation
(|oEp/ot| � x|Ep|, |oEp/oz| � k|Ep|), the wave
equation of the slowly varying envelope Ep(z, t)
of the probe pulse along the z-axis is given by [21]

o

oz
þ 1

tg

o

ot

� �
Ep þ

i

2
b2

o2

ot2
Ep ¼ i

2xp

c
n2jEpj2Ep;

ð9aÞ
1

tg
¼ Re

dk
dx

� �
¼ Re½n0 þ xpdn0=dx�

c
; ð9bÞ

n0ðxpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4pvð1ÞðxpÞ

q
; ð9cÞ

b2 ¼
d2k
dx2

; ð9dÞ

n2 ¼
3pvð3ÞðxpÞ
n0ðxpÞ

; ð9eÞ

where k = xpn0(xp)/c is the wave vector, n0(xp) is
the linear index of refraction, c is the light velocity
in vacuum, tg is group velocity of the probe pulse,
b2 is the group velocity dispersion, and n2 is Kerr-
nonlinear refractive index. Group velocity tg and
group velocity dispersion b2 are mainly determined
by Re[dv(1)/dxp] and d2vð1Þ=dx2

p, respectively.
Figs. 4(a) and (b) show the curves of [dv(1)(xp)/
dxp]/K and ½d2vð1ÞðxpÞ=dx2

p�=K versus the single-
photon detuning D. As can be seen from these
graphs, when far away from the point �dg/
(1 + g), Re[dv(xp)/dxp]� Im[dv(xp)/dxp]. 0
which implies slow group velocity propagation of
the probe pulse, and jRe½d2vðxpÞ=dx2

p�j �
Im½d2vðxpÞ=dx2

p� ’ 0.
We get the transformation of Eq. (9a) by defin-

ing n = z and s = t � z/tg



a

b

Fig. 3. Calculated Im[v(3)(xp)/K
0] and Re[v(3)(xp)/K

0] versus the single-photon detuning D. (a) Two-photon resonance Raman scheme
in the four-level system. The parameters are c3 = c4 = c, c2 = 1 · 10�4c, d = 5c, Xc1 = c, and g = 3/2. (b) A simple two-level (|4æ and |1æ)
system interacts with a probe laser field. The right figures are the expanded view of the left figures.
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oXp

on
þ i

2
b2

o2Xp

os2
¼ iW jXpj2Xp; ð10aÞ

W ¼ �2p
xp

c
K
n0

Að1Þ
4 ðjAð1Þ

4 j2 þ jAð1Þ
3 j2 þ jAð1Þ

2 j2Þ
jXpj2Xp

.

ð10bÞ

From Figs. 3(a) and 4(b), the coefficients b2 and W

of Eq. (10a) can be considered as real when D is far
away from the point �dg/(1 + g). Under this con-
dition, Eq. (10a) is a standard nonlinear Schrö-
dinger equation and has solitary-wave solutions.
The fundamental bright soliton solution is

Xp ¼ Xp0 sec hðs=s0Þ expðijnÞ; ð11aÞ

jXp0s0j2 ¼ � b2r

W r

; j ¼ � b2r

2s20
; ð11bÞ

where b2r and Wr represent the real parts of b2 and
W, respectively. For bright solitons, it should sat-
isfy b2rWr < 0. If b2rWr > 0, it leads to dark soli-
tons. The fundamental dark soliton takes the form

Xp ¼ Xp0 tan hðs=s0Þ expðijnÞ. ð11cÞ
Figs. 3(a) and 4(b) show that b2r · Wr is always

larger than zero when D is far away from �dg/
(1 + g), then the system can only be used to form
dark optical solitons.

As an example, we take 2c4 = 2c3 = 2c = 2 ·
108 s�1, xpK/c = 1.0 · 109 cm�1 s�1, which have
the same order as the parameters given in [11,12],
other parameters are the same as Figs. 2–4. When
taking D = 30c, we get the linear absorption coef-
ficient a . 0.051 cm�1, group velocity tg . 1.3 ·
10�4c, and jXp0s0j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2r=W r

p
’ 55.6. There are

only two adjustable parameters (intensity of the
control field and single-photon detuning D) in this
system. The other two parameters (the separation
d between the two excited states and the relative



a

b

Fig. 4. Calculated imaginary parts and real parts of
(a) [dv(1)(xp)/dxp]/K and (b) ½d2vð1ÞðxpÞ=dx2

p�=K versus the
single-photon detuning D. The parameters are c3 = c4 = c,
c2 = 1 · 10�4c, d = 5c, Xc1 = c, and g = 3/2.
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coupling strength g) are fixed for a certain atomic
medium. From our numerical calculations, we find
that decreasing the Rabi frequency of the control
field will increase the reduction of the group veloc-
ity of the probe pulse and increase the values of
b2r, Wr and |Xp0s0|. The control field must be
strong enough to couple two transitions, on the
other hand relatively lower intensity of control
field can lead to better effects in formation of slow
dark optical solitons. In addition, we have used
assumption of |Xp0|

2 � |Xc1|
2 in our calculations.

From Eq. (11b), there exists relationship of
|Xp0s0|

2 = �b2r/Wr � |Xc1s0|
2. The intensity of

control field also gives a constraint of soliton�s
width s0. Figs. 2–4 show that the parameter D
has a very large range of validity. For the two fixed
parameters, smaller separation d will be better and
there is no special requirement for g.

The cross talk of control field may be viewed as
the perturbation to the two-photon resonance con-
dition, it is the main reason in formation of slow
dark optical solitons. The cross talk comes from
the internal atomic factor (the closely separated
two excited sates). Compared with [11,12], of
which the perturbations come from external fac-
tors (by introducing another laser field or taking
slight two-photon detuning), the cross talk scheme
is a very stable system to form slow dark optical
solitons. Cold alkali metals can be used as the
media. Taking 85Rb as an example, 5S1/2 F = 2,
3 are two ground states, and 5P3/2 F

0 = 1, 2 are se-
lected as two excited states, the separation between
the two excited states is 29 MHz. A strong cw laser
field drives F = 2–F 0 = 1, 2 transitions, and a weak
pulse probes F = 3–F 0 = 2 transition.
5. Conclusions

Based on the two-photon resonance Raman
scheme, we have shown that quantum interference
caused by cross talk of a strong cw laser field not
only maintains negligible linear loss and slow
group velocity but also enhances Kerr nonlinearity
of another weak pulse, it can be used to form
ultraslow dark optical solitons.
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